Как стать автором
Обновить
46
92
Валерий Исаковский @valisak

копирайтер

Отправить сообщение

Недооценённый принцип квантового мира, без которого жизнь была бы невозможной

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров21K


О каких законах, принципах и свойствах квантового мира обычно вспоминают люди, думая о физике элементарных частиц?

Кто-то, скорее всего, вспомнит принцип неопределённости Гейзенберга. Он гласит, что существует предел точности, с которой можно одновременно знать некоторые пары физических свойств частиц — например, положение и импульс. Другими словами, чем точнее измеряется одно свойство, тем менее точно может быть известно другое.

Говоря более формально, принцип неопределённости представляет собой одно из множества математических неравенств, накладывающих фундаментальное ограничение на произведение точности некоторых связанных пар измерений квантовой системы, таких как положение, x, и импульс, p. Такие парные переменные называются дополнительными или канонически сопряжёнными переменными. Принцип неопределённости, впервые введённый в 1927 году немецким физиком Вернером Гейзенбергом, утверждает, что чем точнее определено положение частицы, тем менее точно можно предсказать её импульс, исходя из начальных условий, и наоборот.
Читать дальше →

Правда ли, что при расширении Вселенной энергия не сохраняется?

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров17K

Расширение Вселенной — это увеличение со временем расстояния между гравитационно несвязанными частями наблюдаемой Вселенной (галактиками и их скоплениями). Сложно представить, но Вселенная не расширяется «во что-либо», и «вокруг неё» не обязательно должно существовать какое-то «дополнительное» пространство – вся Вселенная просто становится больше.

Любому наблюдателю из любой части Вселенной покажется, что все галактики, кроме ближайших друг к другу (связанных гравитацией), удаляются со скоростями, в среднем пропорциональными их расстоянию от наблюдателя. Хотя объекты не могут двигаться быстрее света, это ограничение действует только для локальных систем отсчёта и не ограничивает скорости рецессии космологически удалённых объектов – в данном случае между ними появляется дополнительное пространство.

Космическое расширение является ключевой характеристикой космологии Большого взрыва. Математически оно может быть смоделировано с помощью метрики Фридмана-Леметра-Робертсона-Уокера, где оно соответствует увеличению масштаба пространственной части метрики пространства-времени Вселенной (которая определяет размер и геометрию пространства-времени). В этих рамках стационарные объекты со временем разбегаются друг от друга, поскольку пространство расширяется. Это представить ещё сложнее, но в рамках этой метрики можно принять эквивалентное расширению Вселенной описание, при котором пространство не расширяется, а объекты просто раздвигаются друг от друга.
Читать дальше →

Нулевая энергия квантовой системы не равна нулю — и это проблема современной космологии

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров13K


Энергия нулевой точки, или нулевая энергия — это минимально возможная энергия, которой может обладать квантовомеханическая система. В отличие от классической механики, квантовые системы постоянно колеблются вокруг состояния наименьшей энергии — об этом говорит принцип неопределённости Гейзенберга. Поэтому даже при абсолютном нуле атомы и молекулы сохраняют некоторое колебательное движение. Кроме атомов и молекул, этими свойствами обладает и пустое пространство — вакуум. Согласно квантовой теории поля, Вселенную можно представить не как набор изолированных частиц, а как непрерывные колеблющиеся поля: поля материи, квантами которой служат фермионы (т. е. лептоны и кварки), и поля сил, квантами которых являются бозоны (например, фотоны и глюоны). Все эти поля обладают энергией нулевой точки. С какой-то точки зрения можно сказать, что все эти колеблющиеся поля напоминают нам старую теорию об эфире — некоторые системы позволяют обнаружить эту энергию.

Понятие энергии нулевой точки важно и для космологии, и в настоящее время в физике отсутствует полная теоретическая модель для понимания энергии нулевой точки в этом контексте. В частности, источником серьёзных разногласий служит расхождение между теоретической и наблюдаемой энергией вакуума. Физики Ричард Фейнман и Джон Уилер рассчитали, что излучение нулевой точки вакуума на порядок превышает ядерную энергию, а энергии одной лампочки будет достаточно для того, чтобы вскипятить весь Мировой океан. Однако, согласно общей теории относительности Эйнштейна, любая подобная энергия должна оказывать гравитационный эффект, а экспериментальные данные о расширении Вселенной, тёмной энергии и эффекте Казимира показывают, что эта энергия исключительно слабая.
Читать дальше →

Почему самые маленькие чёрные дыры искривляют пространство сильнее всего

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров20K
Симуляция внешнего вида чёрной дыры и окружающего её аккреционного диска, выполненная в 1979 году Ж.-П. Люмине

Идею о существовании в космосе настолько массивного тела, что даже свет не может его покинуть, вкратце изложил английский астроном и священник Джон Мичелл в письме, опубликованном в ноябре 1784 года. Упрощённые расчёты Мичелла предполагали, что у такого тела может быть плотность, сравнимая с солнечной, после чего он сделал вывод, что оно образуется, когда диаметр звезды превышает диаметр Солнца в 500 раз, а скорость убегания с её поверхности превышает скорость света в вакууме. Мичелл назвал эти тела тёмными звёздами. Он правильно отметил, что такие сверхмассивные, но не излучающие тела можно будет обнаружить по их гравитационному воздействию на близлежащие видимые тела. Первоначально учёные того времени были воодушевлены предложением о том, что гигантские, но невидимые «тёмные звёзды» могут скрываться на виду, но энтузиазм поутих, когда в начале XIX века стала очевидной волновая природа света, поскольку если бы свет был волной, а не частицей, то было бы непонятно, как гравитация влияет на убегающие световые волны.
Читать дальше →

Существует ли в мультивселенной бесконечное количество наших копий?

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров11K


Вселенная, даже наблюдаемая нами её часть, непредставимо огромна. В ней существуют триллионы галактик, разбросанных в пространстве несколько десятков миллиардов световых лет в поперечнике. Дальше, за пределами наблюдаемого нами космического горизонта, Вселенная, конечно, ещё больше: ещё больше галактик, ещё больше звёзд, ещё больше планет, возможно, даже бесконечное их число. Но существует также очень большое, возможно, даже бесконечное число возможных квантовых исходов, которые могут произойти в пределах Вселенной. Может ли существовать достаточно галактик, звёзд и «копий» известных нам объектов, чтобы вместить все эти квантовые возможности?

Независимо от того, как долго вы будете считать (если только вы не Чак Норрис) или насколько большое число вы можете себе представить, оно всегда будет бесконечно далеко от «бесконечности». Ещё один из самых удивительных математических фактов заключается в том, что не все бесконечности одинаковы. Некоторые виды бесконечности действительно больше других: как будто они каким-то образом являются большей степенью «бесконечности», чем другие бесконечности. Давайте для начала разберёмся в бесконечностях, а затем перейдём к мультивселенной и понятию бесконечного числа параллельных вселенных.
Читать дальше →

Почему гром от близкой молнии резкий, а от далёкой — раскатистый?

Уровень сложностиСредний
Время на прочтение7 мин
Количество просмотров14K
image

В своей жизни вы наверняка сталкивались с дождём, а также такими яркими проявлениями плохой погоды, как гром и молния. Не возникал ли у вас когда-нибудь вопрос, почему молния с разных расстояний выглядит примерно одинаково (конечно, чем ближе, тем ярче), а звук грома от ударившей неподалёку молнии — резкий, как удар молотка по железу — совсем не похож на раскатистый звук от идущей вдалеке грозы?

Можно придумать несколько объяснений этого явления, но только одно из них будет правильным.

Звук, в общем-то, это волна, проходящая через какую-либо среду: газ (например, воздух), жидкость (например, воду) или твёрдое тело (например, Землю). Если вы когда-нибудь интересовались сейсмическими волнами, проходящими через Землю, то вы можете знать по крайней мере о двух типах волн.
Читать дальше →

Самые убедительные свидетельства существования Вселенной до Большого взрыва

Уровень сложностиСредний
Время на прочтение9 мин
Количество просмотров29K

В начале прошлого века благодаря работам Хаббла и других астрономов стало понятно, что Вселенная, во-первых, не ограничивается Млечным путём (последний – не Галактика, а просто галактика, одна из многих), а во-вторых, все галактики разлетаются друг от друга, как точки на поверхности надуваемого воздушного шарика. Но если шарик надувается, значит в прошлом он был меньше.

В случае со Вселенной это означает, что в прошлом она была меньше, а следовательно, горячее и плотнее. Чем дальше в прошлое, тем всё это сильнее проявляется, и в какой-то момент нашей мысленной экстраполяции назад по шкале времени мы доходим до единой точки — так называемой сингулярности.

В итоге у нас выстраивается логичная цепочка: сингулярность — Большой взрыв — Вселенная началась.

Но с последней трети XX века наблюдения начали выдавать нам больше вопросов, чем ответов. В результате в 1980-х космологи разработали теорию космической инфляции, согласно которой никакой сингулярности не было, а Большому взрыву предшествовало другое, особое состояние Вселенной – инфляционное. В XXI веке мы постепенно начинаем получать доказательства существования Вселенной до Большого взрыва.
Читать дальше →

Результаты работы Уэбба и кандидаты на звания самых далёких и ранних галактик Вселенной

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров3.3K
image

Запущенный в космос телескоп «Джеймс Уэбб» оправдал все надежды астрономов и любителей космоса, и даже более. В частности, он позволил обнаружить множество кандидатов на самые удалённые галактики – а значит, и самые ранние галактики во Вселенной. Эти галактики интересны как для понимания эволюции этих космических структур, так и тем, что в них телескоп теоретически может разглядеть самые первые звёзды.
Читать дальше →

Действительно ли Земля – единственная из известных нам планет с тектоникой плит?

Уровень сложностиСредний
Время на прочтение7 мин
Количество просмотров7.7K
Если две плиты на Земле расходятся в разные стороны, то на их границе образуется новая кора. Если же они сходятся вместе, то кора в этом месте разрушается, когда одна плита заезжает под другую. Бывает ещё, что кора трансформируется, когда плиты скользят горизонтально друг мимо друга

Без тектоники плит наша планета была бы совсем другой. Постоянные перемены в земной коре обеспечивают нам стабильный климат, дают месторождения минералов и нефти, а также океаны с поддерживающим жизнь балансом химических веществ. Они даже дают толчок эволюции каждые несколько сотен миллионов лет.

Откуда же взялась тектоника земных плит? Модели показывают, что для того, чтобы тектоника плит начала работать, планета должна быть подходящего размера. Если она получится слишком маленькой, то её литосфера — твёрдая часть коры и верхней мантии — будет слишком толстой. Слишком большой — и её мощное гравитационное поле сожмёт все плиты вместе, крепко удерживая и не давая двигаться. Условия также должны быть оптимальными: породы, из которых состоит планета, должны быть не слишком горячими, не слишком холодными, не слишком влажными и не слишком сухими.
Читать дальше →
2

Информация

В рейтинге
59-й
Откуда
Саратов, Саратовская обл., Россия
Дата рождения
Зарегистрирован
Активность

Специализация

Content Writer
English